Groupoids and the Associative Law Xii. (representable Cardinal Functions)

نویسندگان

  • Jaroslav Ježek
  • Tomáš Kepka
چکیده

In this paper we investigate under what conditions is a mapping f of a semigroup S into the class of cardinals representable by a groupoid G and a homomorphism g of G onto S such that ker(g) is the associativity congruence of G and Card(g(x)) = f(x) for every x ∈ S. Abstrakt. V tomto článku vyšetřujeme, za jakých podmı́nek lze zobrazeńı f pologrupy S do tř́ıdy všech kardinálńıch č́ısel reprezentovat grupoidem G a zobrazeńım g : G → S tak, že f(G) = S, ker(g) je kongruence asociativity grupoidu G a Card(g(x)) = f(x) pro všechna x ∈ S.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Several types of groupoids induced by two-variable functions

In this paper, we introduce the concept of several types of groupoids related to semigroups, viz., twisted semigroups for which twisted versions of the associative law hold. Thus, if [Formula: see text] is a groupoid and if [Formula: see text] is a function [Formula: see text], then [Formula: see text] is a left-twisted semigroup with respect to [Formula: see text] if for all [Formula: see text...

متن کامل

An efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order

In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples...

متن کامل

Equivariant Representable K-theory

We interpret certain equivariant Kasparov groups as equivariant representable K-theory groups. We compute these groups via a classifying space and as K-theory groups of suitable σ-C-algebras. We also relate equivariant vector bundles to these σ-C-algebras and provide sufficient conditions for equivariant vector bundles to generate representable K-theory. Mostly we work in the generality of loca...

متن کامل

Numerical solution of the Sturm-Liouville problem by using Chebyshev cardinal functions

In this manuscript, a numerical technique is presented for finding the eigenvalues of the regular Sturm-Liouville problems. The Chebyshev cardinal functions are used to approximate the eigenvalues of a regular Sturm-Liouville problem with Dirichlet boundary conditions. These functions defined by the Chebyshev function of the first kind. By using the operational matrix of derivative the problem ...

متن کامل

Circuits and Expressions with Non-associative Gates (extended Abstract) ?

We consider circuits and expressions whose gates carry out multiplication in a non-associative groupoid such as loop. We deene a class we call the polyabelian groupoids, formed by iterated quasidirect products of Abelian groups. We show that a loop can express arbitrary Boolean functions if and only if it is not polyabelian, in which case its Expression Evaluation and Circuit Value problems are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011